Vorträge im SS 2018

  • 24.04.2018

    Prof. Dr. Jan Benedikt (CAU IEAP), Kiel abstract
    Kalte Nicht-Gleichgewichts-Plasmen für neuartige Forschung und Anwendungen

    Nicht-Gleichgewichts-Plasmen besitzen vielfältige Anwendungsmöglichkeiten, die vom Satellitenantrieb über die Herstellung von nanostrukturierten Elektronikbautei-len und der Abscheidung von ultraharten Schutzschichten bis hin zur Plasma-Sterilisation oder Plasmatherapie in Medizin reichen. In diesen Plasmen haben nur die Elektronen sehr hohe Temperaturen (mehrere 10.000 Grad), die Schwerteil-chen (Atome, Moleküle, Ionen) bleiben dagegen kalt. Sie sind normalerweise in ei-nem Gas im Niederdruckbereich realisiert, in welchem hauptsächlich die Elektronen durch die elektrischen Felder beschleunigt werden und die Nicht-Gleichgewichtssituation durch eine geringere Stoßfrequenz und Energieübertrag gewährleistet ist. Nicht-Gleichgewichts-Plasmen kann man aber auch bei Atmo-sphärendruck durch gepulste Felder, Begrenzung des Stromes oder Hochfrequenz-felder realisieren. Die energetischen Elektronen führen zur Anregung von Atomen und Dissoziation von Molekülen, was eine Reaktivität des Gases erreicht, die sonst nur bei viel höheren Gastemperaturen stattfinden würde. Darüber hinaus werden Ionen in Richtung Oberfläche beschleunigt und können sehr feine, aber auch sehr tiefe Strukturen ätzen. In diesem Vortrag werden zuerst die Diagnostik der reakti-ven Plasmakomponenten wie Radikale, Ionen oder Vakuum-UV Strahlung disku-tiert und danach die Plasmaanwendungen in multidisziplinären Feldern der Materi-alsynthese oder Plasmamedizin vorgestellt.

  • 08.05.2018

    Prof. Dr. A. Anders (Leibniz Institute of Surface Engineering (IOM), Leipzig) abstract
    Plasma Potential Distribution and Electron Heating in Sputtering Magnetrons

    Sputtering magnetrons are widely used to make thin films and are generally consid-ered a mature technology. Over the last years it has become known that magnetrons show surprisingly rich physics based on plasma instabilities. Without these instabili-ties, magnetrons would generally not work. The energy needed to ionize atoms of the process gas and sputtered from the target is generallythought to be delivered by "hot" secondary electrons (Penning-Thornton paradigm). Recent theoretical [1], spectro-scopic [2], and probe data [3] however indicate that most of the electrons’ energy comes from the presheath, and is provided by localized electric fields concentrated at the edge of "ionization zones" or "spokes" [4, 5]. This is closely related to self-organization and turbulence as observed in interesting images of magnetron plasmas.

  • 15.05.2018

    free - but no accommodation - Special Olympics Deutschland in Kiel

  • 29.05.2018

    Prof. Dr. Ulf Helmersson (Linköping University, Schweden), abstract
    Wires, trusses and pillars produced by assembly of plasma generated nanopartices

    Nanoparticles generated or supplied to a plasma attains a negative potential due to the nature of the plasma. This open up interesting possibilities in synthesis and assembly of the nanoparticles creating structures in the nano- and micro-range. In this work, we use hollow cathode sputtering powered with high-power pulse to ensure close to full ionized of the source material. This promotes rapid growth of the nanoparticles to desired sizes and the negative charge makes it possibility to guide nanoparticles for assembly and collection on desired positions. This is demonstrated by attracting na-noparticles to substrate positions with a positive potential and focusing nanoparticles through a matrix of electrostatic lenses to assemble the nanoparticles into pillars. For ferromagnetic nanoparticles, we also demonstrate generation of nanowires as well as nanowires cross-linked into trusses. Since the iron nanoparticles are generated under relatively pure condition they assemble into wires without oxides in the interfaces. Nanowires and trusses assembled on conducting substrates can potentially be used as low cost large area electrodes.

  • 05.06.2018


  • 12.06.2018

    Prof. Dr. Francis Halzen (Wisconsin IceCube Particle Astrophysics Center and Department of Physics) University of Wisconsin–Madison, abstract
    ICE CUBE and the Discovery of High-Energy Cosmic Neutrinos

    The IceCube project has transformed a cubic kilometer of natural Antarctic ice into a neutrino detector. The instrument detects more than 100,000 neutrinos per year in the GeV to PeV energy range. Among those, we have isolated a flux of high-energy cosmic neutri-nos. I will discuss the instrument, the analysis of the data, the signi-ficance of the discovery of cosmic neutrinos, and the recent multi-messenger observation of a flaring TeV blazar in coincidence with the IceCube neutrino alert IC170922. The large cosmic neutrino flux observed implies that the Universe’s energy density in high-energy neutrinos is the same as that in gamma rays, suggesting that the sources are connected and that a multitude of astronomical objects await discovery.

  • 19.06.2018

    Prof. Dr. Cornelia Denz (Institut für Angewandte Physik) Westfälische Wilhelms-Universität Münster abstract
    Complex light fields for optical manipulation of nanoparticles and cells

    Light can hold, move and measure micro- and nano particle without touching. This allows implementing a device named optical tweezers which exploits focused laser light to trap and manipulate small particles. When using complex tailored light fields based on holographic principles, optical tweezers become an extraordinary metrology tool for analysis in nanophotonics or biophysics.

  • 26.06.2018

    Prof. Dr. Thomas Mannel (Universität Siegen, Germany), abstract
    Particle Physics after the Higgs Discovery: Where do we go?

    After the recent discovery of the Higgs boson the so-called Standard Model of particle physics has become a complete and mathematically consistent theory, which – at least in principle – could be valid up to extremely high energies. In this talk I will discuss, why research in particle physics is still well motivated, although the Higgs boson is discovered. I will consider on the one hand the theoretical problems of the standard model, on the other hand, I will discuss experimental hints, why the standard model cannot be the final theory of the fundamental interactions.

  • 03.07.2018

  • 10.07.2018

  • 17.07.2018