Physikalisches Kolloquium - Wintersemester 2017

Physics Colloquium at The Faculty of Mathematics and Natural Sciences

Lectures on tuesdays 16.15 in Hans-Geiger auditorium

Leibnizstr. 13, 24098 Kiel
 

  • 24.10.2017

    Dr. Gerard van Rooij (Dutch Institute for Fundamental Energy Research DIFFER, Eindhoven) abstract
    Electrification of chemical industry: a key role for plasma chemistry

    Sustainable energy generation by means of wind or from solar radiation through photovoltaics or concentrated solar power will continue to increase its share of the energy mix. Intermittency due to e.g. day/night cycle, regional variation in availability, and penetration of sustainable energy into sectors other than electricity such as the chemical industry necessitates means of storage, transport and energy conversion on a large scale. A promising option is the synthesis of chemicals and artificial fuels using sustainable energy. A truly circular economy requires that the raw materials are the thermodynamically most stable ones such as CO_2 and N_2 . In this contribution it will be highlighted how plasma chemistry can potentially combine compatibility with e.g. intermittency and localized production to activate these molecules with maximum energy efficiency, essentially due to preferential vibrational excitation (causing inherently strong out-of-equilibrium processing conditions that achieve selectivity in the reaction processes). Examples will be discussed of research carried out at DIFFER to ultimately enable a scale up to chemical industrial applications.

  • 07.11.2017

    Dr. Volker Schulz-von der Gathen (Fakultät für Pysik und Astronomie der Ruhr-Universität Bochum) abstract
    Microplasma arrays: Concept, configuration, characteristics and potential applications

    Microplasma arrays belong to the class of low temperature non-equilibrium atmospheric pressure plasma devices. They consist of huge numbers of about 100 micrometer size cavities regularly positioned on a common ground. These structures are usually generally manufactured applying microstructure techniques on silica wafers [1], but other configurations have been investigated recently. Being basically dielectric barrier discharges, the devices are typically driven by a single power supply at kHz frequencies at voltages of a few hundred volts. Due to the small dimensions strong fields exist in close contact with the surfaces that introduces new physical features. The geometric configuration results e.g. in unique features of discharge dynamics as ionization waves. A huge number of possible applications have been proposed over the last years [2]. The examples range from photonic applications as light generation and detection to large scale surface treatments or use as meta materials. In this talk we will give a basic description of the concepts of microplasma arrays, their operation and some application possibilities. Subsequently we will describe some of the physical features observed mainly by analysis of optical emission.

    [1] J.G. Eden, S.-J. Park, and K.-S. Kim, „Arrays of non-equilibrium plasmas confined to microcavities: an emerging frontier in plasma science and its applications“ Plasma Sources Science and Technology, 2006, 15, S67-S73
    [2] J.G. Eden, and S.-J. Park, „Microcavity plasma devices and arrays: a new realm of plasma physics and photonic applications“, Plasma Phys Control Fusion, 2005, 47, B83-B92
     
  • 14.11.2017

  • 21.11.2017

    Dr. Michael Klick (Plasmatrex, Berlin)

  • 28.11.2017

    Prof. Dr. Ulrich Stroth (TU München/IPP)

  • 05.12.2017

  • 12.12.2017

  • 19.12.2017

  • 09.01.2018

  • 16.01.2018

  • 23.01.2018

  • 30.01.2018

  • 06.02.2018

  • 13.02.2018